Modeling activity-dependent synapse restructuring.
نویسنده
چکیده
The spread of electrical activity in a dendritic tree is shaped, in part, by its morphology. Conversely, experimental evidence is growing that electrical and chemical activity can slowly shape the morphology of the dendrite. In this theoretical study, the dendritic spines are dynamic elements, with biophysical properties that change in response to patterns of electrical activity. Recent experiments and diagrammatic models suggest that activity-dependent processes can regulate structural modifications in dendritic spines as well as their distribution along the dendrite. This study considers how local changes in spine structure (minutes to hours) can influence patterns of electrical activity along the dendrite; and how electrical activity due to synaptic events and excitable membrane dynamics can, over time, influence the morphology of the dendrite. The model presents a slow subsystem for structural synaptic plasticity associated with long-term potentiation. A perturbation problem evolves naturally when the spine stem shortens, since the ratio of spine stem resistance to input resistance is small. Hence, the difference between the spine head and dendritic potentials become negligible. This paper presents an asymptotic expansion of head potential in terms of dendritic potential. This leads to a reduced model for post-synaptic restructuring that captures the dynamics of the full model in a briefer computation period when the spines are well connected to the dendrite.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملRemodeling of Synaptic Actin Induced by Photoconductive Stimulation
Use-dependent synapse remodeling is thought to provide a cellular mechanism for encoding durable memories, yet whether activity triggers an actual structural change has remained controversial. We use photoconductive stimulation to demonstrate activity-dependent morphological synaptic plasticity by video imaging of GFP-actin at individual synapses. A single tetanus transiently moves presynaptic ...
متن کاملSynapse elimination accompanies functional plasticity in hippocampal neurons.
A critical component of nervous system development is synapse elimination during early postnatal life, a process known to depend on neuronal activity. Changes in synaptic strength in the form of long-term potentiation (LTP) and long-term depression (LTD) correlate with dendritic spine enlargement or shrinkage, respectively, but whether LTD can lead to an actual separation of the synaptic struct...
متن کاملModulation of NMDA receptor function: implications for vertebrate neural development.
The NMDA subtype of glutamate receptor is hypothesized to mediate synaptic competition in the developing brain by stabilizing converging synapses that have correlated activity patterns. Disruption of NMDA receptor function during development interferes with synapse elimination and sensory map formation. Moreover, many studies indicate that NMDA receptor function is high during times of synaptic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bulletin of mathematical biology
دوره 66 4 شماره
صفحات -
تاریخ انتشار 2004